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This paper treats the nonlinear, two-point boundary-value problem form&ted by 
Troesch (Ref. 3) and studied by Roberts and Shipman (Ref. 4). Computationally 
speaking, this is a difficult problem, owing to the fact that ihe Jacobian marrir is charac- 
terized by large positive eigenvalues. The resulting numerical difficulties are reduced 
by treating the two-point boundary-value problem as a multipoint boundary-va!ue 
problem. The modified quasilinearization algoritbm of Refs. 5-6 is employed. This 
approach bypasses the integration of the nonlinear equations, which characterizes 
shooting methods. Computational results are also presented for another difficult ncn- 
linear, two-point boundary-value problem, namely, the problem formulated by Ho!: 
(Ref. 7). 

1. INTRODUCTION 

This paper deals with differential equations of the form J? - CJI,(X, t> = 0, subject 
to y initial conditions and q final conditions, with p + q = II: where FI is tht 
dimension of the vector x. There are two main techniques for solving these 
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problems: (i) initial-value methods, also called shooting methods, and (ii) quasi- 
linearization methods [8-131. 

When technique (i) is employed, the initial conditions and the differential 
equations are satisfied at each stage of the process, while the final conditions are 
violated to some degree. A nominal solution is generated by choosing the initial 
vector x(0) in a way consistent with the given initial conditions (this involves 
guessing the missing initial conditions) and by integrating forward the differential 
equations. A correction Ax(O) to the initial vector x(0) is generated so as to reduce 
the error in the final conditions at each iteration. 

When technique (ii) is employed, the initial and final conditions are satisfied at 
each stage of the process, while the differential equations are violated to some 
degree. A nominal solution is generated by choosing the function x(t) in a way 
consistent with the initial and final conditions. Then, a correction Llx(t) to the 
vector function x(t) is generated so as to reduce the error in the differential 
equations at each iteration. 

Regardless of the technique employed, the correction Ax(O) to the initial 
vector x(0) or the correction ax(t) to the vector function x(t) depends on the 
behavior of the Jacobian matrix J = 9%(x, t) associated with the differential system 
under consideration. Once a nominal solution is chosen, the Jacobian matrix 
depends on the time only and, hence, its eigenvalues are time dependent. If the 
eigenvalues have negative real parts, the two-point boundary-value approach of 
[8-131 leads to the solution in a reasonable number of iterations, providing the 
nominal solution is sufficiently close to the actual solution. On the other hand, if 
the eigenvalues have positive real parts, l the exponential growth of some of the 
components of the solution might lead to numerical difficulties, especially when the 
intervai of integration is rather large. 

To forestall the above difficulties, a multipoint approach to the two-point 
boundary-value problem was proposed in [14] and then developed in [15-161 in 
connection with shooting methods. The basic idea is to restrict the growth of some 
of the components of the solution by subdividing the interval of integration into nz 
subintervals and then imposing continuity conditions at the interface between 
subintervals. The resulting approach exhibits characteristics which are inter- 
mediate between those of a shooting method and those of a finite-difference 
method. 

More recently, a multipoint approach to the two-point boundary-value problem 
was developed in [5-61 within the frame of the modified quasilinearization method. 
The main idea is to bypass the integration of the nonlinear equations which 
characterizes the approaches of [ 14-161. 

In this paper, the technique developed in [5-61 is employed to solve the difficult 

1 This is the case with the problems formulated by Troesch (Ref. 3) and Holt (Ref. 7). 



TWO-POINT BOUNDARY-VALUE PROBLEMS 

two-point boundary-value problems formulated by Troesch in 131 and Hoit 
in [7]. Section 2 summarizes the main results of [5X]. Section 3 treats Troesch’s 
problem, and Section 4 treats Holt’s problem. Finally, the conclusions are given in 
Section 5. 

2. MULTIPOINT APPROACEE 

Consider the nonlinear differential equation” 

2 - &c, r) = 0, o<t<i, ii) 

where t is the time, x is the state, and gj is a continuous function of the argumems .Y 
and f. Here, t is a scalar, x an II-vector, and v an n-vector.3 At the initial time t = Oa, 
p nonlinear conditions must be satisfied and, at the final time : = I9 q nonlinear 
conditions must be satisfied, withp + q = 17. Therefore, the boundary conditions 
for the system (I) are expressed in the form 

flew = 0, g[x(l)] = Q* (2) \ , 

wheref is a p-vector and g is a q-vector. 
In the two-point boundary-value approach (TPBVA), the interval of integration 

[O, 11 is a treated as a whole. The problem is to find the function x(t) which solves 
Eq. (1) subject to the boundary conditions (2). 

In the multipoint boundary-value approach (MPBVA), the interval of integration 
p3, I] is divided into nz subintervals by means of the m - 4 time stations 
t, (i t, )...? -fiTi- ) -which are intermediate between the initial time to = 0 and the 5nai 
time t,, = 1. The problem is to find the function x(t) which so!ves Eq. (1) subject 
to the boundary conditions (2) and the interface conditions or continuity conditions 

x(t,); - A&- = 0, i = 1: 2,.... ??? - 1. r;j 

Pevfomance Index 

Since the system under consideration is nonlinear, approximate methods must be 
employed to obtain the solution numerically. Regardless of the method employed, 
any deviation from the solution can be measured in terms of a scalar performance 
index P, which is defined in such a way that P = 0 for the exact solution and P > 0 
for any approximation to the solution. Specifically, P is given by” 

P = f’ [i’ - c&x, t)]‘[k - p(x, t)] dt f fqx(o)] .f[x(O)] -t gyx(l)] g[x(i)J (4) 
‘0 

2 Without loss of generality, the interval of integration is normalized to be [O, I]. 
3 Ail vectors are column vectors. 
4 The superscript T denotes the transpose of a matrix. 
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and measures the cumulative error in the differential equations and the boundary 
conditions. Hence, one can use it as a guide during progression of a particular 
algorithm as well as to establish convergence. In Eq. (4), it is assumed implicitly 
that the function x(t) satisfies the interface conditions (3) at every stage of the 
process. 

Modified Quasihearization Algorithm 

The modified quasilinearization algorithm of [5-61 is designed to achieve a 
descent property on the performance index P. Let x(t) denote the nominal function, 
let f(t) denote the varied function, and let Ax(t) denote the displacement leading 
from the nominal function to the varied function. These quantities satisfy the 
definition 

a(t) = x(t) + Ax(t) = x(t) + olA(t), (5) 

where oi is the stepsize, 0 < 01 < 1, and where A(t) denotes the displacement per 
unit stepsize. 

The function A(t) is determined by the following equations: 

A - y&=(X, t)A + [3i: - qJ(x, t)] = 0, (6) 

fzW0)14’3 +fW)l = 0, &W(l)1 A(1) + &(l)l = 0, (7) 

A(ti)+ - A(&- = 0, i = 1, 2,. .., nz - 1. (8) 

The method employed to solve the linear, nonhomogeneous system (6-8) is 
the method of particular solutions described in [5-61 and is not repeated here. For 
this problem, every iteration requires that n + 1 particular solutions be generated 
in each subinterval by forward integration. Therefore, the total number of particular 
solutions is m(n + l), where nz is the number of subintervals. The solutions are 
combined linearly, and the m(rz + 1) constants are computed so as to satisfy 
Eqs. (6-8). We note that ~RIZ relations between the constants are supplied by 
Eqs. (7-8). The remaining In relations are supplied by the requirement that the sum 
of the constants pertaining to a particular subinterval be equal to one for that 
subinterval [5-61. 

Once the function A(t) is known, Eq. (5) becomes a one-parameter family, the 
parameter being the stepsize 01. For this one-parameter family, the performance 
index P becomes a function of the form P(a). The stepsize 01 is computed by means 
of a bisection process, starting from cx = 1, until a reduction in the performance 
index is obtained. 

After the stepsize 01 is known, the varied function x”(t) is computed with Eq. (5). 
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Then, the coefficients appearing in the differential system, are updated, and the 
next iteration of the modified quasilinearizatior, algorithm is started. The process 
is terminated when the stopping condition P < E is satisfied. 

For a given nominal function x(t), the Jacobian matrix J = F&:, t) is k;?own 
along the interval of integration, and its eigenvalues h(t) can be computed. Even: 
though yI and h are time dependent, they can be regarded as constants over a time 
interval sufficiently small. Of course, this assumption is made only in order to gait 
a qualitative insight into the problem and not for computational purposes. 

With the assumption X = const over a particular subinterval, the general soIuti~3 
of the homogeneous part of the differential Eq. (6) inclrrdes terms of the for, 
exp[h(t - ;$)], where h is any eigenvalue and t - t? denotes rhe time elasped from 
the beginrning cf the subinterval. Let A denote the eigenvalue having the largest real 
part in the given subinterval. If the real part of A is positive, the term exp[A(: - ;,)] 
achieves the highest value at the end of the subinterval. Therefore, if 4t = fit1 - t; 
denotes the length of the subinterval, this highest value is esp[Re(A) 4r]. 

If the method of particular solutions is employed [S-S], the initial conditions fcr 
Eq. (6) are varied systematically at the beginning of each subinterval. A ikar 
combination of these particular solutions is constructed, and the coastants of :jre 
combination are determined so that all the equations and boundary conditicns a~ 
satisfied. This yields a set of linear algebraic equations whose characteristic matrix 
has elements with order of magnitude ranging between 1 and exp[Re(A) At:. Sinz 
agiven computer carries out numerical computations with finite precision, ir is clear 
that the growth of the term exp(A4t) must be contained, otherwise the soktion. 
of the linear system becomes meaningless. 

The selection of the multipoints can now be placed in a better perspective, The 
spacing dt must be determined so that the following inequality is satisfiedz5 

exp[Re(A) dr] < IO@ (9~ i’; 
OK 

Re(A) Lit < /3 log, IO = 2.39, (9.2) 

where /3 denotes the number of significant digits of a given computer. As as 
example, the IBM 370/155 computer is characterized by F = 16 in doubk- 
precision arithmetic. Therefore, for this machine, Ineq, (9.2) becomes 

Re(A)rlt < 36% ilO; \ 

j We emphasize that the symbol dl denotes the time inrerva! between two consecutive muk- 
points and should not be confused with the integration stepsize h employed in each subinterval. 
Note that h < Ar; indeed, in the examples of Sections 34, /I = dt,,100. 



122 MIELE, AGGARWAL AND TIETZE 

In summary, the selection of the multipoints is connected to the selection of the 
starting nominal solution. Even an approximate knowledge of the solution aids in 
the selection of the multipoints via the eigenvalues of the Jacobian matrix. As a 
general rule, the multipoints should be spaced more closely for those portions of the 
solution that have large positive eigenvalues and less closely for those portions that 
have small positive eigenvalues. 

3. PROBLEM OF TROESCH 

In first-order form, the problem of Troesch [3] can be formulated as follows:6 

22 = y, j, = k sinh(kx), (11) 

x(0) = 0, X(1) = 1. w 

Its Jacobian matrix 

J _= 
[ 
0 k” cosh(kx) 
1 0 I (13) 

is characterized by the following eigenvalues: 

h = &-k v’[cosh(kx)], (14) 

which, at the endpoints, become 

40) = xkk, h(l) = &k z/[cosh(k)]. (15) 

For relatively low values of k, the eigenvalues (15.2) are small, and problem 
(11-12) can be treated by employing two-point boundary-value techniques, such 
as those outlined in [8-131. On the other hand, for relatively large values of k, 
the eigenvalues (15.2) are large, becoming h(1) = f1049 for k = 10. Thus, the use 
of multipoint boundary-value techniques, such as those presented in [5-61 and 
[14--161, becomes desirable. 

The attention of these authors was attracted by the recent interesting work of 
Roberts and Shipman [4], who solved problem (11-12) by a combination of 
methods, namely, multipoint, continuation,7 and perturbation in conjunction with 
shooting techniques. These authors wondered whether the multipoint approach of 
[5-61, employed in conjunction with the modified quasilinearization method, might 
yield a more direct, and yet more precise, solution than that given in [4]. Thus, the 

6 The symbols employed here denote scalar quantities. 
’ For a discussion of continuation techniques, see [17]. 
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driving ideas were as follows: (i) to bypass the integration of the nonlinear equations 
which characterizes the approach of [4] and (ii) to bypass the soiution of the 
sequence of multipoint boundary-value problems required by the continuation- 
perturbation technique of [4]. 

Computations were performed using the IBM 3?O,i155 computer at Rice 
University. The modified quasilinearization algorithrri was programmed in 
FORTRAN IV and double-precision arithmetic. The linearized Eqs. (6-8‘1 WE 
integrated using Hamming’s modified predictor-corrector method with a. special 
Runge-Kutta procedure to start the integration routine [18]. %h.e definite integral (4) 
was computed using a modified Simpson rule. 

Solutions to problem (11-12) were computed for three values of the cocs:ant k, 
namely, 

/c = 5, k = 6, k = 10. (;6:1 

In all cases, the modified quasilinearization algorithm was employed i-terarivej!: 
until the following stopping condition was satisfied: 

P < lo-=. 4171 

In addition to the convergence condition ( 17): the following nonconvergence 
conditions were employed: 

(c) M 3 10’“. (!8.5) 

Here, N is the iteration number, N, is the number of bisections of -the stegsize 
required to ensure the decrease of the performance index at any iteration, and Mis 
the modulus of any of the quantities employed in the algorithm. Satisfaction of 
Ineq. (18.1) indicates divergence or extreme slowness of convergence; satisfaction 
of Ineq. (18.2) indicates extreme smallness of the displacement nix; and satis- 
faction of Ineq. (18.3) indicates exponential overflow. 

Multipoirzt Location 

For k = 5 and k = 6, solutions were computed employing m = 8 subintervals 
and 50 integration steps per subinterval. For k = 10: solutions were cotnputec. 
employing ~72 = 14 subintervals and 100 integration steps per subinterval. 

Since the positive eigenvalue becomes quite large near the final point, the 
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multipoints were spaced so as to be more dense near the final point. For m = 8, 
the time stations were located at 

t, = 0.00, t, = 0.50, te = 0.75, t, = 0.88, t, = 0.94, 

t, = 0.97, t, = 0.98, t, = 0.99, t, = 1.00. 
(19) 

For rn = 14, the time stations were located at 

t, = 0,000, t, = 0.500, tp = 0.750, t, = 0.850, t, = 0.910, 

t, = 0.940, t, = 0.960, t7 = 0.970, rs = 0.980, t, = 0.990, (20) 

tlo = 0.992, tin = 0.994, tlz = 0.996, i,, = 0.998, t14 = 1 .OOO. 

Nominal Functions 

Since the differential system (11-12) is characterized by nonnegative value off, 
it is natural to choose nominal functions such that jE > 0. The following one- 
parameter family of nominal functions is consistent with (ll.l), (12.1), and (12.2) 
for every value of the parameter y: 

x = ty ? 4’ = p-1, y 3 1. (21) 

When these nominal functions are employed, Eq. (11.2) is violated, and the 
performance index (4) reduces to 

P(k, y) = J’ [y(y - 1) r2 - k sinh(ktY)]” dt. 
0 

(22) 

An obvious choice of the parameter y is that which gives the minimum value to P 
for given k. 

In this preliminary optimization, it is not essential that the optimum value of y 
be computed exactly; the only important thing is that y be in a proper range. With 
this in mind, the performance index (22) was computed for discrete values of the 
parameter y [I]. Within the discrete set of values given to the parameter y, the 
following values appear to be quasi-optimal: 

y = 12 for k = 5, (23.1) 

y = 20 for k = 6, (23.2) 

y = 150 for k = 10. (23.3) 
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This preliminary optimization required little computer time, since it involves 
straightforward quadratures. It proved to be useftil computationally, since it 
enabled the multipoint boundary-value approach of p-61 to converge rapidly to 
the solution. Indeed, from the computer time viewpoint, this preliminary opti- 
mization is approximately equivalent to one iteration of the modified quasi- 
linearization algorithm of [5-61. 

The problem under consideration is characterized by the first integral 

z = cosh(kx) - ~+/2 = const. 

This first integral is useful in checking the accuracy of the numerical procedure. 

Starting with the nominal functions (21) and (23), computer runs were made 
employing the multipoint boundary-value approach of [5-61. Table I shows the 

TABLE I 

Performance index versus iteration number (Troesch’s problem, MPWA) 

k=S k=6 k = 10 

Pvr P P P 

0.46E + 03 0.28E + 04 0.24E f  07 
0.61.E + 01 0.1o.E f  03 G.16E + 07 
0.62E - 02 0.53E; 00 O.l?E+ 06 
O.SSE - OS 0.29E - 04 0.62E + 04 
0.20E - 19 O.llE - 12 0.86E + 02 

O.SOE - Oi 
O.32E -- Gi 
0.2CE - 19 

performance index P versus the iteration number N. The descent property on P 
was enforced by employing the stepsize 01 = 1 at every iteration: there was no need 
for bisections. Convergence to the stopping condition (17) was achieved in _V = 4 
iterations for k = 5, N = 4 iterations fork = 6: and N = 7 iterations for k = JO. 
This rapid convergence is due to the excellent characteristics of the nominal 
functions (21) and (23). 
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Table II shows the converged initial values x(O), y(O), z(0) and the converged final 
values x(l), y(l), z(l) to seven significant figures. For the converged solutions, the 
tabulated functions x(t), v(t), z(t) are given in [l] to four significant figures. 

TABLE II 

Terminal values at convergence (Troesch’s problem, MPBVA) 

k=5 

x(O) 0.0000000E + 00 
Y(O) 0.4515046E- 01 

z(O) 0.99895346 + 00 

k-6 

0.0000000E + 00 
0.1795095/z - 01 
0.99983896+ 00 

41) 0.1000000E + 01 

Y(l) 0.1210050E + 02 

z(l) 0.99895346 + 00 

0.1000000E + 01 
0.2003576E+ 02 
0.9998392E + 00 

k = 10 

0.0000000E + 00 
0.35833786- 03 
0.9999999E + 00 

0.1000000E + 01 
0.1484064B + 03 
0.9999770E+ 00 

According to the first integral (24), the quantity z should be constant along the 
interval of integration. The constancy of z is verified to seven significant figures for 
k = 5, to five significant figures for k = 6, and to four significant figures for 
k = 10. 

As a further check of the accuracy of the solutions obtained, the differential 
system (11-12) was integrated forward employing the converged initial conditions 
given in Table II. The numerical results show that the computed value of x(1) 
agrees with the prescribed final condition (12.2) to seven significant figures for 
k = 5, to seven significant figures for k = 6, and to six significant figures for 
k = 10. 

Additional Computer Runs 

Computer runs were also made employing the nominal functions (21) with 

y = 1. (25) 

The number of multipoints employed was nz = 8 fork = 5 and k = 6 and m = 14 
for k = 14. Convergence to the stopping condition (17) was achieved in N = 6 
iterations for k = 5 and N = 7 iterations for k = 6. On the other hand, for 
k = 10, convergence was not achieved [nonconvergence (c), see Ineq. (18.3)]. 
Comparison of these data with those of Table I stresses the advantage accrued 
through the preliminary optimization of y described by Eqs. (23). 
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4. PROBLEM OF MOLT 

In first-order form, the problem of Halt [7] can be formulated as follows:” 

This difficult two-point boundary-value problem was treated by Roberts and 
Shipman in [16] and Jones in [19]. Roberts and Shipman employ a combination of 
multipoint and continuation techniques in conjunction with shooting methods. 
Jones employs an automatic continuation technique in conjunction with shooting 
methods. In order to further test the power of the method proposed in [S-6], 
these authors decided to reinvestigate problem (26-28). 

Experinzefztal Conditiorw 

The experimental conditions employed for Holt’s problem -were identical with 
those employed for Troesch’s problem. Solutions to problem (26-28) were com- 
puted for three values of the constant 7, namely, 

7 = 11.3, 7 = 13.3, T = 20.0. g.9) 

Once more, the convergence condition for the modified quasilinearization algorithPn 
was represented by Ineq. (17) and the nonconvergence conditions were given by 
Xneqs. (18). 

Muitipoi& Location 

For 4 = 11.3 and r = 13.3, solutions were computed employing m = 2 
subintervals and 100 integration steps per subinterval. For + = 20.0, solutions 
were computed employing nz = 8 subintervals and 100 integration steps per 
subinterval. 

The magnitude of the eigenvalues at the endpoints is known (E priori in Troesch’s 
problem, while this is not the case in Bolt’s problem. Hence, for lack of better 
information, we spaced the multipoint uniformly. For r?r = 4, the time stations 
were located at 

t, = 0.00, t, = 0.25, t, = 0.50, 2, = 0.75, f, = 1.00. (310) 

a The symbols employed here denote scalar quantities. 
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For m = 8, the time stations were located at 

t, = 0.000, tl = 0.125, t2 = 0.250, I, = 0.375, t, = 0.500, 

t, = 0.625, t, = 0.750, t7 = 0.875, t, = 1.000. (31) 

Nominal Functions 

For all values of the parameter T, the following nominal functions were 
employed: 

x = 0, Y = 0, z = 0, 21 = t, w = 0. (32) 

These nominal functions are consistent with the boundary conditions (28) but 
violate the differential constraints (26-27). 

Computer Runs 

Starting with the nominal functions (32), computer runs were made employing 
the multipoint boundary-value approach of [5-61. Table III shows the stepsize CL 

TABLE III 
Performance index versus iteration number (Holt’s problem, MPBVA) 

7 = 11.3 7 = 13.3 7 = 20.0 

iv a P a P 01 P 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

- 0.7OE + 02 0.97E + 02 - 0.21E + 03 
1 0.57E + 02 112 0.34E + 02 1;‘2 O.lOE + 03 

l/2 0.20E + 02 l/2 O.lOE + 02 l/4 0.83E + 02 
1 O.lGE + 01 1 0.55E - 01 1 0.57E + 02 
1 O.llE - 01 1 0.93E - 04 l/S 0.47E + 02 
1 0.18E - 07 1 0.89E - 10 112 0.37E + 02 
1 0.69E - 18 1 0.31E - 17 1 0.57E + 00 

1 0.53E - 03 
1 0.62E - OS 
1 0.64.E - 18 

and the performance index P versus the iteration number N. The descent property 
on P was enforced by bisecting the stepsize 01 when necessary. Convergence to the 
stopping condition (17) was achieved in N = 6 iterations for 7 = 11.3, N = 6 
iterations for T = 13.3, and N = 9 iterations for T = 20.0. 

Table IV shows the converged initial values x(O), y(O), z(O), u(O), w(0) and the 
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TABLE IV 
Terminal values at convergence (Halt’s problem, MPWA) 

--- 

7 = 11.3 7 = 13.3 7 = 20.0 

x(0) 0.0000000000E + 00 0.0000000000E + 00 Q.00~0Q0000E - co 
Y(5) 0.0000000000E + 00 0.0000000000E + 00 0.0000000000E I 00 
=1@ -0.9663 117990E + 00 -0.9663117939E + 00 -0.9663118008E -{- 00 
u(0) 0.0000000000E + 00 0.00000000oaE + 00 0.0000000000E i- 00 
W(O) 0.6529095731E + 00 0.6529095785E; @O 0.6529095780E + 00 

x:1) --0.1092818831E + 01 -0.1 lY6652039E f  31 --0.118993545X c 01 
Y(l) 0.0000000000E + 00 0.000000000!E+ 00 o.~oo~aooE + 00 
r(i) 0.3652563642E- 01 0.89726128486 - 01 -0.8677066349E- 0' 
u(l) 0.1000000000E +- 01 0.9999599999E + 00 0.9999999999E‘6; 
W$) 0.108171169lE $- 00 0.3887985425E - 02 0.5792789753E ~~ 02 

converged inal vaiues x(l), y(l), z(l), u(l), h:(I) to ten significant figures. For The 
converged solutions, the tabulated functions x(t): j*(b); z(i), ~(tj, w<t) are givea in 
[2] to four significant figures. 

As a check of the accuracy of the solutions obtained, the diEerentia1 system 
(25-28) was integrated forward employing the converged Ktirrl con~&tio~w given in 
Table IV. The numerical results show that the computed values of y(l) and ~$1) 
do not agree with the prescribed final values (28.4) and (28.5). For ri = 11.3 anti 
T = i 3.3, disagreement occurs even in the first significant figure. On the other hand, 
for T = 20.0, the forward integration was interrupted because of exponenti.sl 
overflow [nonconvergence (cj, see Ineq. (18.3)]. 

In an attempt to analyze the above failure, the eigenvalues of the Jacobian matrix 
of the differential system (26-28) were computed at the multipoint iocations, With 
reference to the real part of the eigenvaiues, Table V shows the 3argest Fositive 

TABLE v 

Extreme values of the real part of the eigenvaiues 
of the Jacobian matrix (Holt’s problem, MPBVA) 

Time slation 
Largest positive eigeenvalue (real part) 

Time station 
Largest negative eigenvalue (real partj 
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eigenvalue as well as the largest negative eigenvalue. It indicates that the largest 
positive eigenvalue is 4-5 times greater than the largest negative eigenvalue. 

Since integrating backward results in a change in the sign of the real part of the 
eigenvalues, it was feit that the integration difficulties might be lessened by 
reversing the sense of integration. With this in mind, the differential system (26-28) 
was integrated backward employing the corzvergedfinal conditions given in Table IV. 
The numerical results show that the computed values of x(O), J>(O), U(O) agree with 
the prescribed initial values (28. l), (28.2), (28.3) to five decimal places for 7 = 11.3, 
to five decimal places for T = 13.3, and to three decimal places for T = 20.0. 

Additional Computer Rum 

The results of Table V, interpreted in the light of the discussion of Section 2, 
indicate that an easier treatment of Holt’s problem is possible by integrating the 
system (26-28) in backward time rather than in forward time. Because of the 
reduced size of the positive eigenvalues, s the criterion (10) can be met even with 
At = 1, that is, solving Holt’s problem with a two-point boundary value approach 
(m = 1). 

With this in mind, solutions to Holt’s problem (26-28) were computed with the 
two-point boundary-value approach of [12-131. For T = 11.3 and 7 = 13.3, 
400 integration steps were employed; and, for T = 20.0, 800 integration step 
were employed. For all values of 7, the nominal functions (32) were assumed. 

For the two-point boundary-value approach in backward time, the behavior of 

TABLE VI 
Terminal values at convergence (Holt’s problem, TPBVA) 

7 = 11.3 7 = 13.3 7 = 20.0 

x(O) 0.0000000000E + 00 0.0000000000E + 00 0.0000000000E + 00 
Y(O) 0.0000000000E + 00 0.0000000000E + 00 0.0000000000E + 00 
40) -0.9663 118009E + 00 -0.9663117983E + 00 -0.9663118019E + 00 
40) 0.0000000000Et 00 0.0000000000E + 00 0.0000000000E + 00 
w(0) 0.6529095769E+ 00 0,6529095760E+ 00 0.6529095773E+ 00 

41) -0.1092818828E f  01 -0.1186652039E + 01 -0.1189935445E + 01 
Y(l) 0.0000000000E + 00 0.0000000000E + 00 0.0000000000E + 00 
41) 0.36525671716 - 01 0.8972614674E - 01 -0.8676219384E - 02 
41) 0.1000000000E + 01 0.1000000000E + 01 0.1000000000E + 01 
w(l) 0.1081715368E + 00 0.3888089654E- 02 0.8793138212E - 02 

9 We emphasize that the sign of the eigenvalues changes when the integration sense is reversed. 
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the stepsize 01 and the performance index P is still represented by Table III, with the 
following exceptions: the converged values of the performance index are 
P = O.56E - 18 for 7 = 11.3, P = 0.43E - 22 for I = 13.3, and P = 0.54E - L8 
for : = 20.0. 

Table VI shows the converged initial values x(O), J(O)), z(O), U(O), W(O) and the 
converged final values x(l), y(l), z(l), u(l), w(1). For the converged solutions, the 
tabulated functions x(t), j(t), z(t), u(t)? I are given in [2] to four signikmi 

Ggures. 

As a check of the accuracy of the solutions obtained, the differential system 
(26-28) was integrated backward employing the conpevgecififral con&%~:s given in 
Table VI. The numerical results show that the computed values of x(O), ,~(i)i, zi(,O> 
agree with the prescribed values (2&l), (.28.2), (28.3) to five decimal places for 
7 = 11..3, to six decimal places for T = 13.3, and to five decimal places for 
7 = 20.0. Therefore, the results of Table VI are more precise than those ;7f 
Table IVI 

5. k?KXJSSION AND CONCLUSIONS 

Two unusually difficult two-point boundary-value problems, those rep~eseuted 
by Eqs. (11-12) and (26-28), were converted into multipoint boundary-value 
problems and solved by means of the modified quasilinearization approach of [j-6], 
By properly adjusting the number of multipoints, the spacing between the muI& 
points, and the total number of integration steps, precise solutions were obtained. 

The multipoint modified quasilinearization approach is especially useM in 
solving those nonlinear, two-point boundary-value problems where the Jacobian 
matrix is characterized by eigenvalues having large positive real parts at the solution 
or near the solution. This approach bypasses the integration of the nonlinear 
equations, which characterizes shooting methods. In addition, for the problems 
considered here, it eliminates the necessity for continuation and/or permrbation 
techniques. 

In this problem, the largest positive eigenvalue and the largest negative eigenvalue 
are identical in modulus. Therefore, the forward integration is characterized by the 
same degree of difficulty as the backward integration. This being the case, compn- 
tationa! results were obtained only in forward integration. 

A comparison between the present solutions and those obtained by Roberts and 
Shipman is given in [ 11. The higher degree of precision characterizing the present 
solutions i.s due to several factors, namely: (i) the integrations were performed with 

amming’s method rather than the Runge-Kutta method; (ii) the multipoints 

jSI/Ij/Z-2 
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were spaced with proper regard to the distribution of eigenvalues; and (iii) a larger 
number of integration steps was employed. 

Halt ‘s Problem 

In this problem, the largest positive eigenvalue is 4-5 times greater than the 
largest negative eigenvalue. Therefore, the forward integration is characterized by 
a higher degree of difficulty than the backward integration. 

In forward integration, Holt’s problem could be solved with a MPBVA, and 
could not be solved with a TPBVA. This behavior is consistent with that found in 
[5-61 for several other boundary-value problems. However, the failure of the 
TPBVA seems to contradict the results of [12-131, where the TPBVA led to correct 
results for T = 13.0. Actually, this is not the case, and the explanation for the 
discrepancy is as follows: the present results were obtained on IBM 370/155, which 
is characterized by 16 significant figures in double-precision arithmetic; the results 
of [12-131 were obtained on Burroughs B-5500, which is characterized by 23 signifi- 
cant figures in double-precision arithmetic. Because of the larger number of 
significant figures, the B-5500 computer allows a larger spacing between the 
multipoints than the IBM 370/155 computer [see Ineq. (9.2)]. Indeed, for T = 13.0, 
the spacing allowed by the B-5500 computer covers the entire interval of 
integration! 

In backward integration, Holt’s problem could be solved with a TPBVA, thus 
eliminating the need for a MPBVA. This circumstance can be explained in the light 
of the discussion of Section 2: the positive eigenvalues associated with the backward 
integration are 4-5 times smaller than the positive eigenvalue associated with the 
forward integration. 

Updating Technique 

Within the context of the present paper, two methods for constructing the 
solution A(t) of the linear, multipoint boundary-value problem (6-8) are possible. 
The jirst method requires saving the particular solutions at all the time stations 
considered in the integration process. In this case, the composite solutions A(t) is 
obtained by combining linearly the particular solutions at the above time stations. 
The second method requires saving only the initial conditions employed to generate 
the particular solutions in each subinterval. In this case, the composite solution A(t) 
is obtained by first computing the vectors A(tJ, i = 0, l,..., nz, at the beginning 
of each subinterval and then integrating the linear differential system (6) forward 
once more. Obviously, the second method requires less computer storage than the 
first method. Of course, this reduction in computer storage is obtained at the 
expense of one additional integration of the linear system (6) for each iteration. 
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